WODSS SCIENCE

Name: _	
---------	--

Date: _____

SCH 4CI

Icotopoc

				ISO	topes				
lsotop	es – atoms	of an elem	ent that hav	ve the sam	e number	of	but	different r	numbers
of	 isotopes The mas 	 s of an elem ss number f	ient have th for an isoto	ne pe is show	n after the	but e element's	s symbol.		
	Ex.	There are	e three isoto	opes of hy	drogen:				
	H-1	н				# of p=	#	of n=	
	H-2	н				# of p=	#	of n=	
	H-3	Н				# of p=	#	of n=	
Radio • •	isotopes many elen atoms of u depending	nents have Instable iso I on the nuc	one or mor topes cleus, these	e isotopes , e nuclear cl	that are _ mitting hanges m	ight happe	as their _ n very	or €	changes extremely
Ex.	U	\rightarrow	Th	+		He (alpha	particle)		
• Atomi	medical iso <u>c Mass</u> – m	topes can b ass of each	e delivered	<u>.</u> I /ith respec	t to carbo	to the site n having a	of diseased mass of	l cells.	
1 u = 1	l.66×10 ^{−27} k	g							
The at the ma	omic mass t asses of all t	hat is show he element	n on period 's isotopes.	dic tables f We call t	or each el his mass	ement is a the	ctually the _		of
The m	ass of each	element is	made with	respect to	C-12 hav	ing a mass	s of 12 u (ato	omic mas	s units).
Calcu	lating Avera	age Atomic	: Mass:						
•	we need to use a	know the _		 -	and the _			_ of each	isotope
ave = (a + (a	erage atomic atomic mass atomic mass	c mass s of isotope s of isotope	A) x (abun B) x (abun	dance of is dance of is	sotope A) sotope B)				

Ex. 1 Natural argon contains 99.60% Ar-40, 0.34% Ar-36, and 0.06% Ar-38. Calculate the average atomic mass of argon.

Questions:

1. There are two isotopes of silver: silver-107 and silver-109. Fill in the table below. Use your periodic table to find the atomic number of silver (Ag)

	Mass number	Atomic number	# of protons	# of neutrons
Silver-107				
Silver-109				

Based on your table:

- a. What is different about these two isotopes?
- b. What is the same about these two isotopes?
- c. Silver contains 52% silver-107 and 48% silver-109. Find the average atomic mass of silver.

- 2. What is a radioisotope?
- 3. How are radioisotopes useful?
- 4. Chlorine has two naturally occurring isotopes: Chlorine-35 with an abundance of 76% Chlorine-37 with an abundance of 24%. Find the average atomic mass of chlorine.