Name: \qquad
\qquad

ATOMS

The atom is the smallest unit of matter. Each element is made of \qquad kind of atom. Atoms are made up of three smaller particles called
\qquad
\qquad ,
\qquad and \qquad .

Protons and neutrons are found in dense central area of the atom called the

\qquad . The nucleus contains almost all of the atom's mass.
Protons are positively charged. Each proton has a charge of \qquad and a mass of
\qquad
\qquad . Protons are located in the
\qquad (they have no charge). Each neutron has
\qquad and a mass of \qquad . Neutrons are located in the
\qquad -
Electrons are negatively charged, and they travel rapidly in energy levels called "orbits" or "shells" outside the nucleus. Each electron has a charge of \qquad . Electrons are extremely light. They are \qquad times lighter than a protons or a neutron. Since their mass is so small, we say they have a mass of \qquad . As we'll learn later, electrons are responsible for \qquad .

Diagram of an atom:

Important Numbers and Atoms

Atomic number - Number of \qquad in the nucleus.

- Determines the identity of the atom (for example, the element with an atomic number of 3 has \qquad protons and is always \qquad
- Atoms are always \qquad , which means they have no overall charge. This is because the number of \qquad (negative charges) equals the number of \qquad (positive charges) in every atom. So the atomic number also equals the number of
\qquad -.

Mass number - The number of \qquad plus the number of \qquad

- If we know the mass number (number of protons and neutrons) and atomic number (the number of protons), we can calculate the number of neutrons. How?

Number of Neutrons =

Example: How many protons, electrons, and neutrons are in an atom of beryllium?
4
Be
Berylium
9

Standard Atomic Notation

Scientists show the numbers of subatomic particles using standard atomic notation. In this notation, we write the chemical symbol of the atom, and place the atomic number to the lower left and the mass number to the upper left. For example, the atomic notation for chlorine would be:

This tells us that chlorine has \qquad protons and \qquad electrons. The number of neutrons will be \qquad - \qquad $=$ \qquad
Practice: Complete the table below to find the number of subatomic particles in the first twenty elements. Use your periodic table to find the atomic number and mass number for each element.

Element Name	Symbol	Atomic \#	Mass \#	Standard Atomic Notation	\# of protons	\# of electrons	\# of neutrons
Hydrogen							
Helium							
Lithium							
Beryllium							
Boron							
Carbon							
Nitrogen							
Oxygen							
Fluorine							
Neon							
Sodium							
Magnesium							
Aluminum							
Silicon							
Phosphorus							
Sulfur							
Chlorine							
Prgon							
Calcium							

