WODSS SCIENCE

SCH 4CI

Name: _____

Date:

Formation of Ionic Compounds

lonic bonds are formed when a metallic ion ______ with a positive charge is attracted to a non-metal ion with a negative charge ______.

This attraction between positive and negative ions forms an ______ The bond that arises from the attraction between two oppositely charged ions is called

At room temperature, ionic compounds form solid ______, where large numbers of cations and anions are arranged in repeating 3D pattern. Ionic crystals are called ______.

One crystal contains many ions. The chemical formula of ionic compounds does not show the number of ions present in each crystal; instead it shows the ______.

Example: A crystal of table salt (sodium chloride or NaCl) contains many sodium and chloride ions in a ______ ratio. A crystal of magnesium chloride MgCl₂ contains many magnesium and chloride ions in a ratio of ______ This means that there are twice as many _______ ions as there are _______ ions.
When soluble ionic compounds are dissolved in water, they _______ into positive and negative ions. If the solution is connected to a battery, the _______ will be attracted to the _______ end of the battery, and the _______ are attracted to the _______ end of the battery. This movement of ion causes _______ to flow through the solution. Because ionic compounds can conduct electricity in solution, they are said to be _______.

M stands for any metallic cation, X stands for any non-metallic anion.

	cations			anions		
Group	M ⁺	M ²⁺	M ³⁺	X ³⁻	X ²⁻ 16	X ⁻
Group	 Li⁺	Be ²⁺	AI ³⁺	<u>15</u> N ³⁻	<u> </u>	<u> </u>
	 Na⁺	Mg ²⁺	7.4	P ³⁻	S ²⁻	CI
	K⁺ _.	Ca ²⁺		As ³⁻	Se ²⁻	Br⁻
		31			Te	Г
		Ca ²⁺ Sr ²⁺ Be ²⁺		As ³⁻	Se ²⁻ Te ²⁻	ļ

Rules for Writing Formulas for Ionic Compounds

1. The positive ion ______ is given first in the formula. This is a chemistry custom.

2. The subscripts in the formula must produce an ______

3. The subscripts should be the _____ possible.

Ionic compound formation can be shown in the two methods given below

- 1. Lewis Dot Diagrams
- 2. Cross over the number of charges to make them subscripts, reduce if needed and remove all ones.

Write formulas for a) Al and Cl,

c) Ba and S,