MULTIPLE CHOICE

1.D 2.D 3..B 4.A 5.C 6.A 7.E 8.E

SHORT ANSWER

9.

Chemical Formula	
(a) NaClO_{3}	Sodium chlorate
(b) $\mathrm{Mg}\left(\mathrm{NO}_{2}\right)_{2}$	Magnesium nitrite
(c) HI	Hydrogen iodide
(d) $\mathrm{H}_{2} \mathrm{O}_{2}$	Hydrogen peroxide
(e) CCl_{4}	Carbon tetrachloride

10.

oxygen sodium boron neon
11. To obtain a full valence shell, hydrogen atoms will form covalent bonds with one another. Nitrogen will do the same with itself, in order to give each atom a stable octet.

$\mathrm{H}-\mathrm{H} \quad: \mathrm{N} \equiv \mathrm{N}$:

12. $2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{HOH}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{(\mathrm{aq})}$
13. $\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(a \mathrm{aq})} \quad$ Double Displacement Reaction
14. -Brittle: if lattice is shifted by an impact, like charges are forced next to each other and repel.
-Relatively strong attraction between ions: the ionic bonds must be overcome to a large degree to break down the crystal lattice and allow the substance to melt.
-lons arrange themselves so that there is maximum proximity to ions of opposite charge, but maximum distance from ions of same charge. A crystal lattice is formed and ordered particles result in a solid.
15. a) $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{CCl}_{4}$
b) $\mathrm{HCl}, \mathrm{HF}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$
16. London Dispersion Forces: $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{CCl}_{4}$

Dipole-dipole Forces and London Dispersion Forces: $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{Cl}$
Hydrogen Bonding and London Dispersion Forces: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}$

Quantities in Chemical Reactions Review

MULTIPLE CHOICE

1.D 2.B 3.D 4.A

PROBLEM

5. $m_{\mathrm{Mg}}=24.30 \mathrm{u} \times 1$ atoms $=24.30 \mathrm{u}$
$m_{\mathrm{O}}=16.00 \mathrm{u} \times 2$ atoms $=32.00 \mathrm{u}$
$m_{\mathrm{H}}=1.01 \mathrm{u} \times 2$ atoms $=2.02 \mathrm{u}$
$m_{\text {total }}=58.32 \mathrm{u}$

$$
\begin{aligned}
\% \mathrm{Mg} & =\frac{24.30 \mathrm{u}}{58.32 \mathrm{u}} \times 100 \% & \% \mathrm{O} & =\frac{32.00 \mathrm{u}}{58.32 \mathrm{u}} \times 100 \% \\
& =41.67 \% & & =54.87 \%
\end{aligned}
$$

The percentage composition, by mass, of $\operatorname{Mg}(\mathrm{OH})_{2}$ is 41.67% magnesium, 54.87% oxygen, and 3.46% hydrogen.
6.

$$
\begin{array}{llrl}
m_{\mathrm{C}} & =10.06 \% \square 100.0 \mathrm{~g} \mathrm{C}=10.06 & M_{\mathrm{C}} & =12.01 \mathrm{~g} / \mathrm{mol} \\
\mathrm{~g} & & \\
m_{\mathrm{Cl}} & =89.10 \% \square 100.0 \mathrm{~g} \mathrm{Cl}=89.10 & M_{\mathrm{Cl}}=35.50 \mathrm{~g} / \mathrm{mol} \\
\mathrm{~g} & M_{\mathrm{H}} & =0.84 \% \square 100.0 \mathrm{~g} \mathrm{H}=0.84 \mathrm{~g} & M_{\mathrm{H}}=1.01 \mathrm{~g} / \mathrm{mol} \\
\begin{aligned}
n_{\mathrm{C}} & =10.06 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{12.01 \mathrm{~g}} & n_{\mathrm{Cl}} & =89.10 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{35.50 \mathrm{~g}} \\
& =0.84 \mathrm{~mol} & n_{\mathrm{H}} & =0.84 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{1.01 \mathrm{~g}} \\
& & =2.51 \mathrm{~mol} & =0.83 \mathrm{~mol}
\end{aligned}
\end{array}
$$

The molar ratio for $\mathrm{C}: \mathrm{Cl}: \mathrm{H}$ is $0.84: 2.51: 0.83$. Dividing by 0.83 to obtain the lowest ratio, we obtain the molar ratio of $1: 3: 1$. The empirical formula of the compound is $\mathrm{CCl}_{3} \mathrm{H}$.

$$
\begin{aligned}
\text { empirical formula mass } & =12.01 \mathrm{u}+(3 \times 35.50 \mathrm{u})+1.01 \mathrm{u} \\
& =119.52 \mathrm{u} \\
\frac{\text { molecular mass }}{\text { empirical formula mass }} & =\frac{119.6 \mathrm{u}}{119.52 \mathrm{u}} \\
& =1
\end{aligned}
$$

The molecular formula of the compound is $\mathrm{CCl}_{3} \mathrm{H}$.
7.
mole ratio: $\quad \mathrm{AlCl}_{3}: \mathrm{NaCl}=1: 3$

$$
\begin{aligned}
n_{\mathrm{AlCl}_{3}} & =4.46 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{133.33 \mathrm{~g}} & n_{\mathrm{NaCl}} & =3.34 \times 10^{-2} \mathrm{~mol} \mathrm{AlCl}_{3} \times \frac{3 \mathrm{~mol} \mathrm{NaCl}_{1}}{1 \mathrm{~mol} \mathrm{AlCl}_{3}}
\end{aligned} \quad m_{\mathrm{NaCl}}=0.100 \mathrm{~mol} \times \frac{58.44 \mathrm{~g}}{1 \mathrm{~mol}}
$$

The mass of sodium chloride that can be obtained is $5.86 \mathbf{g}$.
8. We can determine the number of moles of chlorine needed to react completely with 15.9 g of Na .

$$
\begin{aligned}
n_{\mathrm{Na}} & =15.9 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{22.99 \mathrm{~g}} \\
& =0.692 \mathrm{~mol}
\end{aligned}
$$

mole ratio: $\mathrm{Na}: \mathrm{Cl}_{2}=2: 1$

$$
\begin{aligned}
n_{\mathrm{Cl}_{2}} \text { needed } & =0.692 \mathrm{~mol} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{2 \mathrm{~mol} \mathrm{Na}} \\
& =0.346 \mathrm{~mol}
\end{aligned}
$$

$n_{\mathrm{Cl}_{2}}$ available $=27.4 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{70.90 \mathrm{~g}}$

$$
=0.386 \mathrm{~mol}
$$

More chlorine is available than is required, therefore, chlorine is in excess. The sodium is the limiting reagent.
$n_{\mathrm{Na}}=0.692 \mathrm{~mol}$
mole $\quad \mathrm{Na}: \mathrm{NaCl}=1: 1$
ratio:

$$
\begin{aligned}
n_{\mathrm{NaCl}} & =n_{\mathrm{Na}} \\
& =0.692 \mathrm{~mol} \\
m_{\mathrm{Na} \mathrm{C}} & =0.692 \mathrm{~mol} \times \frac{58.44 \mathrm{~g}}{1 \mathrm{~mol}} \\
& =40.4 \mathrm{~g}
\end{aligned}
$$

The theoretical yield of the NaCl is 40.4 g .

$$
\begin{aligned}
\text { percentage yield } & =\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \% \\
& =\frac{36.9 \mathrm{~g}}{40.4 \mathrm{~g}} \times 100 \% \\
& =91.3 \%
\end{aligned}
$$

The percentage yield is 91.3%.

ANSWERS: 1. Avogadro's number is 6.02×10^{23} and it represents the number of particles in one mole.
2. $3.69 \mathrm{~g} \mathrm{3}$. Molar mass $=44.009 \mathrm{~g} / \mathrm{mol} 4 . \% \mathrm{O}=94.1 \% \mathrm{H}=5.9 \%$ 5. 6.38 g 6. a) Hydrogen is LR b) 4 mol HCl 7. a) $5.11 \mathrm{~g} \mathrm{b)} 13 \%$

Solutions and Solubility Review

MULTIPLE CHOICE

1.E 2.E 3.C 4.A

PROBLEM

5. $m_{\mathrm{Na}_{3} \mathrm{PO}_{4}}=150.0 \mathrm{~g}$
$C_{\mathrm{Na}_{3} \mathrm{PO}_{4}}=0.23 \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
n_{\mathrm{Ni}_{3} \mathrm{PO}_{4}} & =150.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{163.94 \mathrm{~g}} & v_{\mathrm{Ni}_{3} \mathrm{PO}_{4}} & =\frac{0.9150 \mathrm{~mol}}{0.23 \mathrm{~mol} / \mathrm{L}} \\
& =0.9150 \mathrm{~mol} & & =4.0 \mathrm{~L}
\end{aligned}
$$

$M_{\mathrm{Na}_{3} \mathrm{pO}_{4}}=163.94 \mathrm{~g} / \mathrm{mol}$
The volume of the solution will be 4.0 L .
6. $v_{\mathrm{f}}=2.0 \mathrm{~L}$

$$
\begin{aligned}
v_{\mathrm{i}} C_{\mathrm{i}} & =v_{\mathrm{f}} C_{\mathrm{f}} \\
v_{\mathrm{i}(\text { acetic acid) })} & =\frac{v_{\mathrm{f}} C_{\mathrm{f}}}{C_{\mathrm{i}}} \\
& =\frac{2.0 \mathrm{~L} \times 1.5 \mathrm{~mol} / \mathrm{L}}{17.4 \mathrm{~mol} / \mathrm{L}} \\
& =1.7 \times 10^{-1} \mathrm{~L} \\
& =1.7 \times 10^{2} \mathrm{~mL}
\end{aligned}
$$

$C_{\text {i }}=17.4 \mathrm{~mol} / \mathrm{L}$

The volume of the stock acetic solution needed is $1.7 \times 10^{2} \mathrm{~mL}$.
7. $3 \mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq)}} \rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{FeCl}_{3(\mathrm{aq})}$
$100.0 \mathrm{~mL} \quad 100.0 \mathrm{~mL} \quad \mathrm{~m}$
$0.100 \mathrm{~mol} / \mathrm{L} \quad 0.100 \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
n_{\mathrm{BaSO}_{4}} & =0.100 \mathrm{~L} \times 0.100 \mathrm{~mol}^{2} \mathrm{~L} \mathrm{BaCl}_{2} \times \frac{3 \mathrm{~mol} \mathrm{BaSO}_{4}}{3 \mathrm{~mol} \mathrm{BaCl}_{2}} & m_{\mathrm{BaSO}_{4}} & =0.01 \mathrm{~mol} \times \frac{233.39 \mathrm{~g}}{1 \mathrm{~mol}} \\
& =0.01 \mathrm{~mol} & & =2.3 \mathrm{~g}
\end{aligned}
$$

The theoretical mass of barium sulfate is 2.3 g .

$$
\begin{aligned}
\% \text { yield } \mathrm{BaSO}_{4} & =\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \\
& =\frac{2.0 \mathrm{~g}}{2.3 \mathrm{~g}} \times 100 \\
& =87 \%
\end{aligned}
$$

The \% yield of the barium sulfate precipitate was 87%.
8. $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}}$

$$
\begin{aligned}
& =10^{-7.5} \mathrm{~mol} / \mathrm{L} \\
& =3.2 \times 10^{-8} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

The hydrogen ion concentration of the swimming pool is $3.2 \times 10^{-8} \mathbf{~ m o l} / \mathrm{L}$.
9. $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{NaOH}_{(\mathrm{aq})} \square \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
$10.00 \mathrm{~mL} \quad 8.66 \mathrm{~mL}$
C $\quad 0.00512 \mathrm{~mol} / \mathrm{L}$
$n_{\mathrm{NiOH}}=8.66 \mathrm{~mL} \times \frac{0.0512 \mathrm{~mol}}{1 \mathrm{~L}}$
$=0.4434 \mathrm{mmol}$
$n_{\mathrm{H}_{2} \mathrm{sO}_{4}}=0.4434 \mathrm{mmol} \times \frac{1}{2}$
$=0.2217 \mathrm{mmol}$

$$
\begin{aligned}
C_{\mathrm{H}_{2} \mathrm{sO}_{4}} & =\frac{0.2217 \mathrm{mmol}}{10.00 \mathrm{~mL}} \\
& =0.02217 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

The sulfuric acid concentration in the lake is $2.22 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$.

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{(3 \mathrm{q})}^{+}\right] \\
& =-\log (0.02217) \\
& =1.654
\end{aligned}
$$

The pH of the lake water is $\mathbf{1 . 6 5}$.
10. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]$

$$
\begin{aligned}
& =-\log \left[3.12 \times 10^{-5}\right] \\
& =4.506
\end{aligned}
$$

The pH of beer is $\mathbf{4 . 5 0 6}$.

Unit 4: Organic Chemistry Review

Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

1. A 2.B3.B4.D 5 C 6. C

Problems

7. Give the IUPAC name for each of the following:
a) propane
b) 3-heptene
c) butanal d) 2-pentanol
8. Draw structural diagrams for the following compounds:
a) Ethanol
b) propyne
c) hexanoic acid

d) 2-butanone
e) propanal
f) 3-heptene
g) ethanoic acid
h) 2-butanol
