MULTIPLE CHOICE

1.D 2.D 3..B 4.A 5.C 6.A 7.E 8.E

SHORT ANSWER

9.	Chemical Formula	IUPAC Name		
		Sodium chlorate		
	(b) Mg(NO ₂) ₂	Magnesium nitrite		
	(c) HI	Hydrogen iodide		
	(d) H ₂ O ₂	Hydrogen peroxide		
	(e) CCl ₄	Carbon tetrachloride		
0.				

10

∶ö∙	Na∙	٠Ġ٠	:Ņe:
oxygen	sodium	boron	neon

11. To obtain a full valence shell, hydrogen atoms will form covalent bonds with one another. Nitrogen will do the same with itself, in order to give each atom a stable octet.

H - H $:N \equiv N$:

12. $2Na_{(s)} + 2HOH_{(l)} \rightarrow H_{2(g)} + 2NaOH_{(aq)}$

13. Na₂SO_{4(aq)} + Pb(NO₃)_{2(aq)} \rightarrow PbSO_{4(s)} + 2NaNO_{3(aq)} **Double Displacement Reaction**

14. -Brittle: if lattice is shifted by an impact, like charges are forced next to each other and repel. -Relatively strong attraction between ions: the ionic bonds must be overcome to a large degree to break down the crystal lattice and allow the substance to melt. -lons arrange themselves so that there is maximum proximity to ions of opposite charge, but maximum distance from ions of same charge. A crystal lattice is formed and ordered particles result in a solid.

- b) HCI, HF, CH₃CI, H₂O 16. a) CO₂, CH₄, CCl₄
- 17. London Dispersion Forces: CO₂, CH₄, CCl₄

Dipole-dipole Forces and London Dispersion Forces: HCI, CH₃CI

Hydrogen Bonding and London Dispersion Forces: H₂O, HF

Quantities in Chemical Reactions Review

MULTIPLE CHOICE

1.D 2.B 3.D 4.A

PROBLEM

5. $m_{Ma} = 24.30 \text{ u} \times 1 \text{ atoms} = 24.30 \text{ u}$ $m_{\rm O}$ = 16.00 u x 2 atoms = 32.00 u $m_{\rm H} = 1.01 \text{ u} \text{ x} 2 \text{ atoms} = 2.02 \text{ u}$ $m_{\rm total} = 58.32 \text{ u}$

$\%Mg = \frac{24.30 \text{ u}}{58.32 \text{ u}} \times 100\%$	$\%O = \frac{32.00 \text{ u}}{58.32 \text{ u}} \times 100\%$	$\%H = \frac{2.02 \text{ u}}{58.32 \text{ u}} \times 100\%$
= 41.67%	= 54.87%	= 3.46%

The percentage composition, by mass, of $Mg(OH)_2$ is 41.67% magnesium, 54.87% oxygen, and 3.46% hydrogen.

 $m_{\rm C} = 10.06\% \Box 100.0 \text{ g C} = 10.06 \qquad M_{\rm C} = 12.01 \text{ g/mol}$ $m_{\rm CI} = 89.10\% \Box 100.0 \text{ g CI} = 89.10 \qquad M_{\rm CI} = 35.50 \text{ g/mol}$ $m_{\rm H} = 0.84\% \Box 100.0 \text{ g H} = 0.84 \text{ g} \qquad M_{\rm H} = 1.01 \text{ g/mol}$ $n_{\rm C} = 10.06 \text{ g} \times \frac{1 \text{ mol}}{12.01 \text{ g}} \qquad n_{\rm CI} = 89.10 \text{ g} \times \frac{1 \text{ mol}}{35.50 \text{ g}} \qquad n_{\rm H} = 0.84 \text{ g} \times \frac{1 \text{ mol}}{1.01 \text{ g}}$ $= 0.84 \text{ mol} \qquad = 2.51 \text{ mol} \qquad = 0.83 \text{ mol}$

The molar ratio for C:Cl:H is 0.84:2.51:0.83. Dividing by 0.83 to obtain the lowest ratio, we obtain the molar ratio of 1:3:1. The empirical formula of the compound is CCl₃H.

empirical formula mass = $12.01 u + (3 \times 35.50 u) + 1.01 u$

 $\frac{\text{molecular mass}}{\text{empirical formula mass}} = \frac{119.6 \text{ u}}{119.52 \text{ u}}$

= 1

The molecular formula of the compound is CCI₃H.

7.

mole ratio: $AICI_3:NaCI = 1:3$

The mass of sodium chloride that can be obtained is 5.86 g.

8. We can determine the number of moles of chlorine needed to react completely with 15.9 g of Na. 1 mol

 $n_{Na} = 15.9 \text{ g} \times \frac{1 \text{ mol}}{22.99 \text{ g}}$ = 0.692 mol mole ratio: Na:Cl₂ = 2:1 $n_{Cl_2} \text{ needed} = 0.692 \text{ mol Na} \times \frac{1 \text{ mol Cl}_2}{2 \text{ mol Na}}$ = 0.346 mol

$$n_{\text{Cl}_2}$$
 available = 27.4 g × $\frac{1 \text{ mol}}{70.90 \text{ g}}$

= 0.386 mol

More chlorine is available than is required, therefore, chlorine is in excess. The sodium is the limiting reagent.

 $n_{\rm Na} = 0.692 \, {\rm mol}$

mole Na:NaCl = 1:1 ratio:

 $n_{\rm NaC1} = n_{\rm Na}$

= 0.692 mol

 $m_{\rm NaCl} = 0.692 \text{ mol} \times \frac{58.44 \text{ g}}{1 \text{ mol}}$

= 40.4 g

The theoretical yield of the NaCl is 40.4 g.

percentage yield =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100\%$$

= $\frac{36.9 \text{ g}}{40.4 \text{ g}} \times 100\%$
= 91.3%

The percentage yield is 91.3%.

ANSWERS: 1. Avogadro's number is 6.02×10^{23} and it represents the number of particles in one mole. 2. 3.69 g 3. Molar mass = 44.009 g/mol 4. % O = 94.1% H = 5.9% 5. 6.38 g 6. a) Hydrogen is LR b) 4 mol HCl 7. a) 5.11 g b) 13%

Solutions and Solubility Review

MULTIPLE CHOICE

1.E 2.E 3.C 4.A

PROBLEM

5. $m_{Na_3PO_4} = 150.0 \text{ g}$ $n_{Na_3PO_4} = 150.0 \text{ g} \times \frac{1 \text{ mol}}{163.94 \text{ g}}$ $v_{Na_3PO_4} = \frac{0.9150 \text{ mol}}{0.23 \text{ mol/L}}$ $C_{Na_3PO_4} = 0.23 \text{ mol/L}$ = 0.9150 mol = 4.0 L

 $M_{\rm Na, PO_4} = 163.94 \text{ g/mol}$

The volume of the solution will be 4.0 L.

6. $v_{f} = 2.0 L$ $C_{i} = 17.4 \text{ mol/L}$ $C_{f} = 1.5 \text{ mol/L}$ $v_{i (acetic acid)} = \frac{v_{f}C_{f}}{C_{i}}$ $= \frac{2.0 L \times 1.5 \text{ mol/L}}{17.4 \text{ mol/L}}$ $= 1.7 \times 10^{-1} L$ $= 1.7 \times 10^{2} \text{ mL}$

The volume of the stock acetic solution needed is $1.7 \times 10^2 \text{ mL}$.

7. $3BaCl_{2(aq)}$ + Fe₂(SO₄)_{3(aq)} → $3BaSO_{4(s)}$ + 2FeCl_{3(aq)} 100.0 mL 100.0 mL *m* 0.100 mol/L 0.100 mol/L

 $n_{\text{BaSO}_4} = 0.100 \text{ L} \times 0.100 \text{ mol/L BaCl}_2 \times \frac{3 \text{ mol BaSO}_4}{3 \text{ mol BaCl}_2}$ = 0.01 mol $mol \times \frac{233.39 \text{ g}}{1 \text{ mol}}$ = 2.3 g

The theoretical mass of barium sulfate is 2.3 g.

% yield BaSO₄ =
$$\frac{\text{actual yield}}{\text{theoretical yield}} \times 100$$

= $\frac{2.0 \text{ g}}{2.3 \text{ g}} \times 100$
= 87 %

The % yield of the barium sulfate precipitate was 87%.

8. $[H_{(aq)}^{+}] = 10^{-pH}$ = $10^{-7.5}$ mol/L = 3.2×10^{-8} mol/L

The hydrogen ion concentration of the swimming pool is 3.2×10^{-8} mol/L.

9. $H_2SO_{4(aq)} + 2NaOH_{(aq)} \square Na_2SO_{4(aq)} + 2H_2O_{(l)}$ 10.00 mL 8.66 mL C 0.00512 mol/L $n_{NaOH} = 8.66 \text{ mL} \times \frac{0.0512 \text{ mol}}{1 \text{ L}}$ = 0.4434 mmol $n_{H_2SO_4} = 0.4434 \text{ mmol} \times \frac{1}{2}$ = 0.2217 mmol

$$C_{\text{H}_2\text{SO}_4} = \frac{0.2217 \text{ mmol}}{10.00 \text{ mL}}$$

= 0.02217 mol/L

The sulfuric acid concentration in the lake is 2.22×10^{-2} mol/L.

$$pH = -log[H^{+}_{(aq)}]$$
$$= -log(0.02217)$$
$$= 1.654$$

The pH of the lake water is 1.65.

10. $pH = -\log [H_{(aq)}^+]$

```
= -\log [3.12 \times 10^{-5}]
= 4.506
```

The pH of beer is 4.506.

Unit 4: Organic Chemistry Review

Multiple Choice: Identify the letter of the choice that best completes the statement or answers the question.

1. A 2. B 3. B 4. D 5 C 6. C

Problems

7.

Give the IUPAC name for each of the following: a) propane b) 3-heptene c) butanal d) 2-pentanol

8. Draw structural diagrams for the following compounds:a) Ethanolb) propynec) hexanoic acid

$$\begin{array}{c} H H \\ H - C - C - O - H \\ H H \end{array} \qquad H \xrightarrow{H} C^{-} C \equiv C - H \\ H H \end{array}$$

d) 2-butanone

e) propanal

f) 3-heptene

g) ethanoic acid

h) 2-butanol