- Cac Avogadro's Constant and the Mole

istry, we don't talk about a certain number of atoms because atoms are too small to count. We'd be talking in umbers if we were counting atoms. Instead, we use a called a mole.

ole = 6.022×10^{23} particles (atoms, ions, molecules or nula units)

= 602 200 000 000 000 000 000 000 particles!!! $H_2O(m\cdot c) - 6 \cdot 022 \times 16^3$ molecules of water. There 6.022 x 10²³ is called <u>Avogadro's constant</u> (N_A). To realized that 6.022 x 10²³ atoms of any element have a grams, that is equal to the numerical value of the 's atomic mass.

e = one atom of carbon has a mass of 12.01μ or a_{mu} mole of carbon atoms has a mass of 12.011 g. m of iron has a mass of 55.845μ and one mole of iron as a mass of 55.845q

use Avogadro's constant to calculate the number of moles stance, or the number of particles in a substance. We use wing symbols in our calculations: n = N

Quantity	Unit `
# of moles	mol
# of particles	atoms, ions, formula units or molecules
Avogadro's number (6.022 x 10 ²³)	particles / mol

w that 1 mole = 6.022×10^{23} particles. List the possible ion factors from this equation:

2 6.022 XIO

1 m 0