Molar Mass and the Mole
Molar Mass $(M) \rightarrow$ is the mars of one mole of a substance Unit is $\mathrm{g} / \mathrm{mol}$ \qquad
Avogadro's number is special because 6.022×10^{23} atoms of an element has a mass in grams that is equal to its atomic mass.

Average atomic mass in $\mathbf{u}=$ Molar mass in $\mathrm{g} / \mathrm{mol}$
Example 1
Atomic mass $\mathrm{Na}=$ \qquad Molar Mass of $\mathrm{Na}=$ \qquad $22.990 \mathrm{~g} / \mathrm{mol}$ Example 2 Find the molar mass of NaCl :

$$
\begin{gathered}
22.990 \mathrm{~g} / \mathrm{mol}+35.453 \mathrm{~g} / \mathrm{mol} \\
=58.43 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

You can use molar mass to write conversion factors for NaCl :

$$
\times \frac{58.4439}{\operatorname{mop}}
$$

OR
lImos

$$
58.443 \mathrm{~g} .
$$

a) What is the mass of 2.56 mol NaCl ?

$$
\begin{aligned}
& 1 \mathrm{~mol}=58.443 \mathrm{~g} \\
& 2.56 \text { mot }=\frac{2.56 \mathrm{~m} / \mathrm{op} \times \frac{58.44 .39}{102}=149.61408 \mathrm{~g} .}{2 .} \\
& \text { nsf } \\
& 1 \mathrm{mpl} \rightarrow 150 \mathrm{~g}_{1.5 \times 10^{2} \mathrm{~g} .} \text { or } \\
& \text { b) How many mol are in a } 35.2 \mathrm{~g} \text { sample of } \mathrm{NaCl} \text { ? } \\
& 1 \mathrm{mof}=58.443 \mathrm{~g} \\
& \begin{array}{c}
35 f \\
35.2 g \times \frac{1 \mathrm{~mol}}{58.443 g} \\
55 f
\end{array}=0.602296254 \mathrm{~mole}
\end{aligned}
$$

Example 3 What is the mass of a 0.750 mol sample of CO_{2} ?

$$
\begin{aligned}
& \text { Mof } \mathrm{CO}_{2}=12.011+(2 \times 15.99 \mathrm{~g})=44.009 \mathrm{~g} \\
& 1 \mathrm{moL}^{2}=44.009 \mathrm{~g} \quad 0.750 \% 4.04 .009 \mathrm{~g}=33.00675 \mathrm{~g} \\
& 0.750 \mathrm{moL}=?
\end{aligned}
$$

Example 4 How many mol are in a 23.6 g sample of $\mathrm{Mg}^{\left(1 \mathrm{EP}_{2} \text { ? }\right.}$

$$
\begin{array}{rl}
\text { M of } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}=24.305+(2 \times 14.007)+(6 \times 15.999) & =148.31 \mathrm{~g} \mathrm{~g} \\
& \rightarrow 148.31 \mathrm{gg} \mathrm{mg} \\
1 \mathrm{mof} & =148.31 \mathrm{~g} . \\
\therefore 23.6 \mathrm{~g}=? ~ & 23.6 \mathrm{~g} \times \frac{1 \mathrm{mg} \mathrm{f}}{148.31 \mathrm{~g}}=0.159126154 \\
& \rightarrow 0.159 \mathrm{mof}
\end{array}
$$

