Unit \#1 and 2: Matter and Chemical Bonding Review and Chemical Reactions Solutions

MULTIPLE CHOICE: 1.D 2.D 3.A 4.D 5.B 6.A 7.C 8.A 9.E 10.E 11.E

SHORT ANSWER

12. Ionization energy increases because atomic radius decreases. This happens because the nuclear charge increases, but the number of energy levels does not. Therefore, the nucleus has a stronger hold on the electrons as the nuclear charge increases. Therefore more energy is required to remove an electron.
13. helium
14. element Z
15.

: 0	Na.	-这
oxygen	sodium	boron

16. To obtain a full valence shell, hydrogen atoms will form covalent bonds with one another. Nitrogen will do the same with itself, in order to give each atom a stable octet.

$\mathrm{H}-\mathrm{H}$
 : N = N:

17.

	Aqueous	Non-aqueous
(a) $\mathrm{HClO}_{3(\mathrm{aq})}$	chloric acid	hydrogen chlorate
(b) $\mathrm{HNO}_{2(\mathrm{aq)}}$	nitrous acid	hydrogen nitrite
(c) $\mathrm{HI}_{(\text {aq) }}$	hydroiodic acid	hydrogen iodide

18. $2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+2 \mathrm{NaOH}_{(\mathrm{aq})}$
19. $\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(a q)} \rightarrow \mathrm{PbSO}_{4(\mathrm{~s})}+2 \mathrm{NaNO}_{3(\mathrm{aq})} \quad$ Double Displacement Reaction
20. a)-Brittle: if lattice is shifted by an impact, like charges are forced next to each other and repel.
-Relatively strong attraction between ions: the ionic bonds must be overcome to a large degree to break down the crystal lattice and allow the substance to melt. -lons arrange themselves so that there is maximum proximity to ions of opposite charge, but maximum distance from ions of same charge. A crystal lattice is formed and ordered particles result in a solid.
21.

b) $\mathrm{HCl}, \mathrm{HF}, \mathrm{CH}_{3} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$

MgO

London Dispersion Forces: $\mathrm{CO}_{2}, \mathrm{CH}_{4}, \mathrm{CCl}_{4}$

Non-polar molecule

Dipole-dipole Forces and London Dispersion Forces: $\mathrm{HCl}, \mathrm{CH}_{3} \mathrm{Cl}$
DD \&

DD \&

Hydrogen Bonding and London Dispersion Forces: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}$

Unit 3: Quantities in Chemical Reactions Review

MULTIPLE CHOICE: 1.B 2.D 3.B 4.D 5.A

PROBLEM

6. $m_{\mathrm{Mg}}=24.30 \mathrm{u} \times 1$ atoms $=24.30 \mathrm{u}$
$m_{\mathrm{O}}=16.00 \mathrm{u} \times 2$ atoms $=32.00 \mathrm{u}$
$m_{\mathrm{H}}=1.01 \mathrm{u} \times 2$ atoms $=2.02 \mathrm{u}$
$m_{\text {total }}=58.32 \mathrm{u}$

$$
\begin{aligned}
\% \mathrm{Mg} & =\frac{24.30 \mathrm{u}}{58.32 \mathrm{u}} \times 100 \% & \% \mathrm{O} & =\frac{32.00 \mathrm{u}}{58.32 \mathrm{u}} \times 100 \%
\end{aligned} \begin{aligned}
\% \mathrm{H} & =\frac{2.02 \mathrm{u}}{58.32 \mathrm{u}} \times 100 \% \\
& =41.67 \%
\end{aligned}
$$

The percentage composition, by mass, of $\mathrm{Mg}(\mathrm{OH})_{2}$ is $\mathbf{4 1 . 6 7 \%}$ magnesium, 54.87% oxygen, and 3.46% hydrogen.
7. Assuming 100 g of sample
$C=10.06 \mathrm{~g}$
$\mathrm{Cl}=89.10 \mathrm{~g}$

$$
\begin{aligned}
& M_{\mathrm{C}}=12.011 \mathrm{~g} / \mathrm{mol} \\
& M_{\mathrm{Cl}}=35.453 \mathrm{~g} / \mathrm{mol} \\
& M_{\mathrm{H}}=1.008 \mathrm{~g} / \mathrm{mol}
\end{aligned}
$$

$$
\begin{aligned}
n_{\mathrm{C}} & =10.06 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{12.011 \mathrm{~g}} & n_{\mathrm{Cl}} & =89.10 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{35.453 \mathrm{~g}}
\end{aligned} \quad n_{\mathrm{H}}=0.84 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{1.008 \mathrm{~g}}
$$

The molar ratio for $\mathrm{C}: \mathrm{Cl}: \mathrm{H}$ is $0.84: 2.51: 0.83$. Dividing by 0.83 to obtain the lowest ratio, we obtain the molar ratio of $1: 3: 1$. The empirical formula of the compound is $\mathrm{CCl}_{3} \mathrm{H}$.
empirical formula mass $=12.01 u+(3 \times 3.453 u)+1.008 u$
$=$
$\begin{aligned} \frac{\text { molecular mass }}{\text { empirical formula mass }} & =\frac{119.6 \mathrm{u}}{119.378 \mathrm{u}} \\ & =1\end{aligned}$
The molecular formula of the compound is $\mathrm{CCl}_{3} \mathrm{H}$.
8.
mole ratio: $\quad \mathrm{AlCl}_{3}: \mathrm{NaCl}=1: 3$

$$
\begin{aligned}
n_{\mathrm{AlCl}_{3}}= & 4.46 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{133.341 \mathrm{~g}} & n_{\mathrm{NaCl}} & =3.34 \times 10^{-2} \mathrm{~mol} \mathrm{AlCl}_{3} \times \frac{3 \mathrm{~mol} \mathrm{NaCl}_{1}^{1 \mathrm{~mol} \mathrm{AlCl}_{3}}}{} \quad m_{\mathrm{NaCl}}
\end{aligned}=0.100 \mathrm{~mol} \times \frac{58.443 \mathrm{~g}}{1 \mathrm{~mol}}
$$

The mass of sodium chloride that can be obtained is 5.86 g .
9. We can determine the number of moles of chlorine needed to react completely with 15.9 g of Na .

$$
\begin{aligned}
n_{\mathrm{Na}} & =15.9 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{22.99 \mathrm{~g}} \\
& =0.692 \mathrm{~mol}
\end{aligned}
$$

mole ratio: $\mathrm{Na}: \mathrm{Cl}_{2}=2: 1$

$$
\begin{aligned}
n_{\mathrm{Cl}_{2}} \text { needed } & =0.692 \mathrm{~mol} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Cl}_{2}}{2 \mathrm{~mol} \mathrm{Na}} \\
& =0.346 \mathrm{~mol} \quad \begin{aligned}
n_{\mathrm{Cl}_{2}} \text { available } & =27.4 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{70.906} \mathrm{~g} \\
& =0.386 \mathrm{~mol}
\end{aligned}
\end{aligned}
$$

More chlorine is available than is required, therefore, chlorine is in excess. The sodium is the limiting reagent.
$n_{\mathrm{Na}}=0.692 \mathrm{~mol}$
mole $\quad \mathrm{Na}: \mathrm{NaCl}=1: 1$
ratio:

$$
\begin{aligned}
n_{\mathrm{Na} \mathrm{Cl}} & =n_{\mathrm{Na}} \\
& =0.692 \mathrm{~mol} \\
m_{\mathrm{NaC1}} & =0.692 \mathrm{~mol} \times \frac{58.44 \mathrm{~g}}{1 \mathrm{~mol}} \\
& =40.4 \mathrm{~g}
\end{aligned}
$$

The theoretical yield of the NaCl is 40.4 g .
percentage yield $=\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \%$

$$
\begin{aligned}
& =\frac{36.9 \mathrm{~g}}{40.4 \mathrm{~g}} \times 100 \% \\
& =91.3 \%
\end{aligned}
$$

The percentage yield is 91.3%.

Unit 4: Solutions and Solubility Review Solutions

MULTIPLE CHOICE: 1.E 2.A 3.B 4.E 5.C 6.A

PROBLEM

7. $\begin{aligned} m_{\mathrm{Na}_{3} \mathrm{PO}_{4}} & =150.0 \mathrm{~g} & n_{\mathrm{Na}_{3} \mathrm{PO}_{4}} & =150.0 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{163.94 \mathrm{~g}} \\ C_{\mathrm{Na}_{3} \mathrm{PO}_{4}} & =0.23 \mathrm{~mol} / \mathrm{L} & & v_{\mathrm{Na}_{3} \mathrm{PO}_{4}}\end{aligned}=\frac{0.9150 \mathrm{~mol}}{0.23 \mathrm{~mol} / \mathrm{L}}$
$M_{\mathrm{Na}_{3} \mathrm{pO}_{4}}=163.94 \mathrm{~g} / \mathrm{mol}$
The volume of the solution will be 4.0 L .
8. $v_{\mathrm{f}}=2.0 \mathrm{~L} \quad v_{\mathrm{i}} C_{\mathrm{i}}=v_{\mathrm{f}} C_{\mathrm{f}}$
$\begin{aligned} & C_{\mathrm{i}}=17.4 \mathrm{~mol} / \mathrm{L} \\ & C_{\mathrm{f}}=1.5 \mathrm{~mol} / \mathrm{L}\end{aligned} v_{\mathrm{i}(\text { (cectic acid })}=\frac{v_{\mathrm{f}} C_{\mathrm{f}}}{C_{\mathrm{i}}}$
$=\frac{2.0 \mathrm{~L} \times 1.5 \mathrm{~mol} / \mathrm{L}}{17.4 \mathrm{~mol} / \mathrm{L}}$
$=1.7 \times 10^{-1} \mathrm{~L}$
$=1.7 \times 10^{2} \mathrm{~mL}$
The volume of the stock acetic solution needed is $1.7 \times 10^{2} \mathrm{~mL}$.
9. $\quad \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4(\mathrm{~s})} \rightarrow 2 \mathrm{Na}^{+}{ }_{(\mathrm{aq})}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(\mathrm{aq})}$

$$
m=8.50 \mathrm{~g}
$$

$v=500 \mathrm{~mL}$

$$
\begin{array}{rlrl}
n_{\mathrm{Na}_{2} \mathrm{c}_{2} \mathrm{O}_{4(3)}} & =8.50 \mathrm{~g} \times \frac{1 \mathrm{~mol}}{133.998 \mathrm{~g}} \quad C_{\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4(9)}} & =\frac{0.0634 \mathrm{~mol}}{0.500 \mathrm{~L}} \\
& =0.0634 \mathrm{~mol} & & =0.127 \mathrm{~mol} / \mathrm{L}
\end{array}
$$

$\left[\mathrm{Na}^{+}{ }_{(\mathrm{aq})}\right]=2 \times 0.127 \mathrm{~mol} / \mathrm{L}$
$=0.25 \mathrm{~mol} / \mathrm{L}$
The sodium ion concentration is $0.25 \mathrm{~mol} / \mathrm{L}$.
$\left[\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}{ }_{(3 q)}\right]=0.13 \mathrm{~mol} / \mathrm{L}$
The oxalate ion concentration is $0.13 \mathrm{~mol} / \mathrm{L}$.
10. $3 \mathrm{BaCl}_{2(\mathrm{aq})}+\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3(\mathrm{aq})} \rightarrow 3 \mathrm{BaSO}_{4(\mathrm{~s})}+2 \mathrm{FeCl}_{3(\mathrm{aq})}$ $100.0 \mathrm{~mL} \quad 100.0 \mathrm{~mL} \quad 2.0 \mathrm{~g}$ $0.100 \mathrm{~mol} / \mathrm{L}$ $0.100 \mathrm{~mol} / \mathrm{L}$

$$
\begin{aligned}
n_{\mathrm{BaSO}_{4}} & =0.100 \mathrm{~L} \times 0.100 \mathrm{~mol}^{2} \mathrm{~L} \mathrm{BaCl}_{2} \times \frac{3 \mathrm{~mol} \mathrm{BaSO}_{4}}{3 \mathrm{~mol} \mathrm{BaCl}_{2}} & m_{\mathrm{BaSO}_{4}} & =0.01 \mathrm{~mol} \times \frac{233.888 \mathrm{~g}}{1 \mathrm{~mol}} \\
& =0.01 \mathrm{~mol} & & =2.3 \mathrm{~g}
\end{aligned}
$$

The theoretical mass of barium sulfate is 2.3 g .

$$
\begin{aligned}
\% \text { yield } \mathrm{BaSO}_{4} & =\frac{\text { actual yield }}{\text { theoretical yield }} \times 100 \\
& =\frac{2.0 \mathrm{~g}}{2.3 \mathrm{~g}} \times 100 \\
& =86 \%
\end{aligned}
$$

The \% yield of the barium sulfate precipitate was 86%.
11. $\left[\mathrm{H}^{+}{ }_{(\mathrm{aq})}\right]=10^{-\mathrm{pH}}$

$$
\begin{aligned}
& =10^{-7.5} \mathrm{mo} / \mathrm{L} \\
& =3.2 \times 10^{-8} \mathrm{mo} / \mathrm{L}
\end{aligned}
$$

The hydrogen ion concentration of the swimming pool is $3.2 \times 10^{-8} \mathrm{~mol} / \mathrm{L}$.
12. $\quad \mathrm{H}_{2} \mathrm{SO}_{4(\text { aq) }}+2 \mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ $10.00 \mathrm{~mL} \quad 8.66 \mathrm{~mL}$
$C ? \quad 0.00512 \mathrm{~mol} / \mathrm{L}$

$$
n_{\mathrm{NzOH}}=8.66 \mathrm{~mL} \times \frac{0.0512 \mathrm{~mol}}{1 \mathrm{~L}}
$$

$$
=0.4434 \mathrm{mmol}
$$

$$
n_{\mathrm{H}_{2} \mathrm{sO}_{4}}=0.4434 \mathrm{mmol} \times \frac{1}{2}
$$

$$
=0.2217 \mathrm{mmol}
$$

$$
C_{\mathrm{H}_{2} \mathrm{so}_{4}}=\frac{0.2217 \mathrm{mmol}}{10.00 \mathrm{~mL}}
$$

$$
=0.02217 \mathrm{~mol} / \mathrm{L}
$$

The sulfuric acid concentration in the lake is $0.0222 \mathrm{~mol} / \mathrm{L}$.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) \rightarrow 2 \mathrm{H}+(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
$[\mathrm{H}+]=2(0.02217 \mathrm{~mol} / \mathrm{L})$
$\mathrm{pH}=-\log [\mathrm{H}+]$
$=-\log (2 \times 0.02217)$
$=1.35$
The pH of the lake water is $\mathbf{1 . 3 5}$.
13. $\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{zq})\right]$

$$
\begin{aligned}
& =-\log \left[3.12 \times 10^{-5}\right] \\
& =4.506
\end{aligned}
$$

The pH of beer is $\mathbf{4 . 5 1}$.

Unit 5: Gases Review Solutions

MULTIPLE CHOICE: 1.E 2.B 3.B 4.A
PROBLEM
5. $\quad V_{1}=375 \mathrm{~mL} \quad P_{2}=95.5 \mathrm{kPa} \quad V_{2}=1.25 \mathrm{~L} \quad P_{1}=$?

Convert mL to L for $V_{1}: \quad V_{1}=375 \mathrm{~mL} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}}$
$=0.375 \mathrm{~L}$

$$
\begin{aligned}
P_{1} V_{1} & =P_{2} V_{2} \\
P_{1} & =\frac{P_{2} V_{2}}{V_{1}} \\
& =\frac{95.5 \mathrm{kPa} \times 1.25 \mathrm{~L}}{0.375 \mathrm{~L}} \\
& =318 \mathrm{kPa}
\end{aligned}
$$

The pressure of the gas was 318 kPa .
6. $\quad m=3.45 \mathrm{~g} \quad T=273 \mathrm{~K} \quad P=101.325 \mathrm{kPa} R=8.31 \mathrm{kPaL} / \mathrm{molK} \quad V=$?

$$
\begin{aligned}
\text { Convert mass to moles of } \left.\begin{array}{rl}
\mathrm{CO}_{2}: \text { number of moles of } \mathrm{CO}_{2} & =\frac{3.45 \mathrm{~g} \times 1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g}} \\
& =0.0784 \mathrm{~mol}
\end{array}\right) . \begin{aligned}
\\
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
P V & =n R T \\
V & =\frac{n R T}{P} \\
& =\frac{0.0784 \mathrm{~mol} \times 8.31 \mathrm{kPa} \mathrm{~L} / \mathrm{mol} \mathrm{~K} \times 273.15 \mathrm{~K}}{101.325 \mathrm{kPa}} \\
& =1.76 \mathrm{~L}
\end{aligned}
$$

The volume occupied by the CO_{2} is 1.76 L .
7.

$\boldsymbol{P}_{\mathbf{1}}$	$\boldsymbol{V}_{\mathbf{1}}$	$\boldsymbol{T}_{\mathbf{1}}$	$\boldsymbol{P}_{\mathbf{2}}$	$\boldsymbol{V}_{\mathbf{2}}$	$\boldsymbol{T}_{\mathbf{2}}$
95.5 kPa	15.5 L	$245^{\circ} \mathrm{C}+273.15$ $=518.15 \mathrm{~K}$	107 kPa	20.5 L	$?$

$$
\begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \quad T \text { in }{ }^{\circ} \mathrm{C}=768 \mathrm{~K}-273=495^{\circ} \mathrm{C} \\
T_{2} & =\frac{P_{2} V_{2} T_{1}}{P_{1} V_{1}} \\
& =\frac{107 \mathrm{kPa} \times 2.5 \mathrm{~L} \times 518.15 \mathrm{~K}}{95.5 \mathrm{kPa} \times 15.5 \mathrm{~L}} \\
& =768 \mathrm{~K}
\end{aligned}
$$

The new temperature will be $495^{\circ} \mathrm{C}$.
8.

\boldsymbol{P}	\boldsymbol{V}	\boldsymbol{n}	\boldsymbol{R}	\boldsymbol{T}
$?$	2.25 L	$?$	$8.31 \mathrm{kPa} \mathrm{L} / \mathrm{mol} \mathrm{K}$	$27^{\circ} \mathrm{C}+273.15=$
300.15 K				

$$
\text { number of moles of } \begin{aligned}
\mathrm{Xe} & =75.0 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{Xe}}{131.3 \mathrm{~g}} \\
& =0.571 \mathrm{~mol}
\end{aligned}
$$

$$
\begin{aligned}
P V & =n R T \\
P & =\frac{n R T}{V} \\
& =\frac{0.571 \mathrm{~mol} \mathrm{Xe} \times 8.31 \mathrm{kPa} \mathrm{~L} / \mathrm{mol} \mathrm{~K} \times 300.15 \mathrm{~K}}{2.25 \mathrm{~L}} \\
& =634 \mathrm{kPa}
\end{aligned}
$$

The pressure in the flask will be $\mathbf{6 3 4} \mathbf{~ k P a}$.
9. $P=101.325 \mathrm{kPa}$
$T=273 \mathrm{~K}$
$V=15.5 \mathrm{~L}$
$R=8.31 \mathrm{kPa} \mathrm{L} / \mathrm{mol} \mathrm{K}$ $n=$?

$$
\begin{aligned}
P V & =n R T \\
n & =\frac{P V}{R T} \\
& =\frac{101.325 \mathrm{kPa} \times 15.5 \mathrm{~L}}{8.31 \mathrm{kPa} \mathrm{~L} / \mathrm{mol} \mathrm{~K} \times 273.15 \mathrm{~K}} \\
& =0.692 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}
\end{aligned}
$$

number of moles of $\mathrm{CO}_{2}=0.692 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2} \times \frac{4 \mathrm{~mol} \mathrm{CO}_{2}}{2 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{2}}$

$$
=1.384 \mathrm{~mol} \mathrm{CO}_{2}
$$

mass of $\mathrm{CO}_{2}=1.38 \mathrm{~mol} \times \frac{44.009 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{CO}_{2}}$
$=60.9 \mathrm{~g}$
The mass of CO_{2} will be 60.9 g , regardless of the temperature or pressure.

