\qquad

Concentration

\qquad

Concentration - is the amount of \qquad per quantity of \qquad

A. Percentage Concentrations

1. volume/volume $(\mathbf{V} / \mathrm{V})$ percent $=$ volume of solute $(\mathrm{mL}) \times 100$

Volume is not additive volume of solution (mL)

Example: vinegar is $5 \% \mathrm{~V} / \mathrm{V}$ acetic acid, which means that in a 100 mL solution of vinegar, there are \qquad mL of acetic acid.
2. Weight/weight (W / W) percent $=\underline{w e i g h t ~ o f ~ s o l u t e ~}(\mathrm{~g}) \times 100$ weight of solution (g)

Example: In a 200 g tube of toothpaste, there are 0.486 g of dissolved sodium fluoride.
W / W concentration of $\mathrm{NaF}=$

Mass is Additive:

3. Weight/volume $(\mathrm{W} / \mathrm{V})$ percent $=\frac{\text { mass solute }(\mathrm{g})}{\text { volume of solution }(\mathrm{mL})} \times 100$

Example:A salt solution has 12.8 g of salt in 1 L of solution. W/V concentration of $\mathrm{NaCl}=$
B. Parts per Million

- concentrations of very \qquad can be expressed in parts per million (ppm)

$$
\mathrm{ppm}=\frac{\text { mass of solute }(\mathrm{mg})}{\text { volume of solution }(\mathrm{L})}
$$

Example: In a 0.25 L sample of pond water, 2.2 mg of dissolved oxygen are measured.
Concentration of O_{2} in ppm=
C. Molar Concentration (Molarity)- the number of moles of solute that can dissolve in 1 L of solution (mol/L or M)
Molar concentration $(\mathrm{mol} / \mathrm{L})=\underline{\text { amount of solute }(\mathrm{mol})}$ volume of solution (L) \square

Example 1: A solution contains 5.85 g of sodium chloride dissolved in 5000 mL of water. What is the concentration of the sodium chloride in $\mathrm{mol} / \mathrm{L}$?

Example 2: What is the concentration in mol/L of a solution that contains 49 g of sulfuric acid in 3.0 L of solution?

Example 3: What mass of potassium hydroxide is required to prepare 600 mL of a $0.225 \mathrm{~mol} / \mathrm{L}$ solution?

Example 4: A solution containing $0.125 \mathrm{~mol} / \mathrm{L}$ of magnesium chloride is required for an experiment. If 87.8 g of solid magnesium chloride is available, what is the maximum volume of solution that can be prepared?

Home Work: \#1 page 373, \#11 page 375, \#22 page 376, \#31 page 378, \#41,42,44,46 (tricky think of \# of atoms) page 381

