\qquad
\qquad

Empirical and Molecular Formula

John Dalton stated that \qquad

Water has the chemical formula $\mathrm{H}_{2} \mathrm{O}$. In terms of mass, its molecule is always made up of \qquad hydrogen and \qquad of oxygen.

Empirical Formula (

 2:Is the lowest \qquad of atoms in a compound.
Example: $\mathrm{CH}_{2} \mathrm{O}$ or MgF_{2}
Problem 1. What is the empirical formula of the compound $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{2}$ \qquad

Limitations

Does not tell you \qquad .

Only tells you the \qquad . Different molecules could have the same percent composition but contain different numbers of atoms in the molecule.

Example: Acetylene and Benzene
Problem 2. Determine the empirical formula using the average percent composition values from a combustion analyzer

$$
\% \mathrm{C}=38.71 \quad \% \mathrm{H}=9.71 \quad \% \mathrm{O}=51.58
$$

Basis: Assume you have a sample of 100 g
C
H
$\% \quad \rightarrow$
Mass \rightarrow
Moles \rightarrow

To find the ratio: Divide the \# of moles of each element by the smallest number and round to the nearest whole number.
Ratio \rightarrow
Exception: when one element has 0.5 mol then multiply all by two.
Empirical formula \rightarrow

Problem 3. What's the empirical formula of a molecule containing 65.5% carbon, 5.5% hydrogen, and 29.0% oxygen?

Molecular Formula: shows the \qquad

Example: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} ; \mathrm{MgF}_{2}$
It is possible for \qquad

Example:	Benzene	MF	$\mathrm{C}_{6} \mathrm{H}_{6}$	EF	
	Acetylene	MF	$\mathrm{C}_{2} \mathrm{H}_{2}$	EF	-

Can the molecular formula equal the empirical formula?
Example: Carbon monoxide
Water
Example:

Substance	Formaldehyde	Acetic acid	Glucose
Empirical formula	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{O}$
Molecular formula	$\mathrm{CH}_{2} \mathrm{O}$	$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
Use	preservative	vinegar	sweetener

To \qquad

We need:

1. Molar Mass $(\mathrm{M}) \rightarrow$ use a Mass Spectrometer to get the molar mass
2. Empirical Formula

Example: The empirical formula of a compound (COMPOUND A) is $\mathrm{CH}_{3} \mathrm{O}$ and its molecular mass, as determined by mass spectrometer is $93.120 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula?
Molar mass of empirical formula ($\mathrm{M}_{\mathrm{E} . \mathrm{F}}$) =
Molar mass of molecular formula $\left(\mathrm{M}_{\mathrm{M} . \mathrm{F}}\right)=$
Scale up factor =
Molecular formula = Empirical formula \times Scale up factor

Problem 1: A compound with an empirical formula of $\mathrm{C}_{2} \mathrm{OH}_{4}$ and a molar mass of 88 grams per mole.

Problem 2: A component of protein called serine has an approximate molar mass of $105 \mathrm{~g} / \mathrm{mole}$. If the percent composition is as follows, what is the empirical and molecular formula of serine?

$$
\mathrm{C}=34.95 \% \mathrm{H}=6.844 \% \mathrm{O}=46.56 \% \mathrm{~N}=13.59 \%
$$

