## **WODSS SCIENCE**

Name: \_\_\_\_\_

Date:

.

SCH 4CI

**Stoichiometry: Gram to Gram Calculations** 

- 1. Write a \_\_\_\_\_\_ chemical equation.
- 2. List the given information below the compounds.
- 3. Use a question mark to indicate \_\_\_\_\_
- 4. Calculate the \_\_\_\_\_\_ for the given compound and the unknown.

## Example 1:

If 2.56 g of chlorine,  $Cl_2$ , are used to prepare dichlorine heptoxide,  $Cl_2O_7$ , how many moles and how many grams of oxygen are needed?

## Example 2:

Propane,  $C_3H_8$ , is a gas used in BBQs. It burns in oxygen to produce carbon dioxide and water. Calculate the mass of propane that is needed to produce 12.1 g of water.

## **Stoichiometric Problems**





- 1. Write a balanced equation for the reaction between nitrogen dioxide gas and water to produce nitric acid and nitrogen monoxide gas. State all the mole ratios.
- 2. Consider the following reaction:  $Mg_{(s)} + 2HCI_{(aq)} \rightarrow MgCI_{2(aq)} + H_{2(g)}$ a) Write the all the mole ratios
  - b) How many moles of HCl are required to react with 2.0 moles of Mg?
  - c) How many moles of hydrogen are formed when 3.5 moles of Mg react?
  - d) How many moles of HCI are required to react completely with 8.6 moles of Mg?
- 3. How many moles of hydrogen gas are produced from the decomposition of 12.0 g of water into its elements?
- Fe<sub>2</sub>O<sub>3(s)</sub> + 6HCl<sub>(aq)</sub> → 2FeCl<sub>3(aq)</sub> + 3H<sub>2</sub>O<sub>(l)</sub>
  What mass of hydrochloric acid is required to react with 234 g of rust (Fe<sub>2</sub>O<sub>3</sub>)?
- 5.  $2N_2O_{5(s)} \rightarrow 4NO_{2(g)} + O_{2(g)}$ How many grams of oxygen will be produced in this reaction when 1.76 g of nitrogen dioxide are made?
- 6.  $8Zn_{(s)} + S_{8(s)} \rightarrow 8ZnS_{(s)}$ What mass of zinc sulfide is expected when 54.0 g of S<sub>8</sub> reacts?
- 7. Potassium metal reacts with hydrochloric acid to produce aqueous potassium chloride and hydrogen gas. How many grams of potassium are required to produce 5.00 g of hydrogen gas.
- 2NaN<sub>3(s)</sub> → 3 N<sub>2(g)</sub> + 2Na<sub>(s)</sub>
  What mass of sodium azide (NaN<sub>3</sub>) is required to produce 1.72x10<sup>24</sup> molecules of nitrogen gas? (Hint: how do you convert molecules to moles?)

Answers: 2b) 4.0mol c) 3.5mol d) 17mol 3. 0.666mol 4. 3.20x10<sup>2</sup>g 5. 0.306g 6. 164g 7. 194g 8. 124g