Name: \qquad
Date: \qquad

Activity: Introduction to Lenses

Part A - Parallel Lines

1. Place your lens in the indicated space
2. Using your ray box shine five parallel rays parallel to the principal axis
3. Mark the path of the light with a series of small dots
4. Remove the lens and use a ruler to connect the pencil marks (the light should change direction at the outline of the lens)
5. For the diverging lens use a ruler and trace the reflected rays back behind the lens

Converging lens

Diverging lens

What do you notice about the direction of the refracted rays in each lens?

Why does this happen?

1. Place your lens in the indicated space below and shine a ray of light along the incident ray indicated
2. Use a pencil to lightly trace the path of the light
3. Remove the lens and use a ruler to connect the pencil marks with solid lines to show the path of the light (the light ray should change direction at the outline of the lens)
4. Draw a normal at the points where the light enters and exits the lens and measure the angles
\rightarrow Converging Lens

Does the light bend towards or away from the normal as it enters the lens? Using your knowledge of refraction explain why.

Does the light bend towards or away from the normal as it exits the lens? Using your knowledge of refraction explain why.

A lens is a \qquad with at least one \qquad side that causes light to \qquad
There are two main types of lenses...

Converging lenses

Diverging lenses

RAY DIAGRAMS - THE BASICS!

Drawing Ray diagrams

For Converging Lenses

Need three rays originating from a required point of the object in order to find the image.

- A ray that travels parallel to the principal axis will refract through the lens and travel towards the focal point on the opposite side of the lens
- A ray that travels in line with the focal point on the same side of the lens will refract through the lens and travel parallel to the principal axis
- A ray that travels through the centre of the lens will continue to travel in the same direction If the rays do not meet extend them back to find the image

For Diverging Lenses

Need three rays originating from a point of the object in order to find the image.

- A ray that travels parallel to the principal axis will refract through the lens and travel in line with the focal point on the same side of the lens as the object
- A ray that travels in line with the focal point on the opposite side of the lens will refract through the lens and travel parallel to the principal axis
- A ray that travels through the centre of the lens will continue to travel in the same direction If the rays do not meet extend them back to find the image

With both converging and diverging LENSES,

- if your refracted rays actually meet, the image is "real"
- if your refracted rays don't meet and need to be extended backwards to meet, the image is "virtual"

