\qquad

The Arrhenius Theory of Acids and Bases

- An acid is a substance that ionizes in water to produce one or more hydrogen ions $\left(\mathrm{H}^{+}\right.$ hydronium ion)
** Acids are molecular compounds, however forms ions when dissolved in water, so we say they " \qquad " in water.**
e.g.
- A base is a substance that dissociates in water to form one or more hydroxide ions $\left(\mathrm{OH}^{-}\right)$
** Bases are ionic compounds and form ions when dissolved in water, so we say they " \qquad " in water.**
e.g.

Strong and Weak Acids and Bases

Strong Acid - an acid that ionizes completely into ions in water

- $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$
e.g.

Weak Acid - an acid that ionizes very slightly in a water solution

- $\left[\mathrm{H}^{+}\right]<[\mathrm{HB}]$
e.g.

Strong Base - a base that dissociates completely into ions in water e.g. $\mathrm{NaOH}, \mathrm{KOH}$

(b) Weak acid

Weak Base - a base that dissociates/ionizes very slightly in a water solution
e.g. NH_{3}

The pH Scale

- the concentration of H^{+}ions in pure water is $1 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$ - not very convenient
- pH scale was established so that $\left[\mathrm{H}^{+}\right]$could be expressed in a more convenient manner
$1 \times 10^{-1} \mathrm{M}$
1
acidic

neutral
$1 \times 10^{-14} \mathrm{M}$ 14
basic

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

in pure water:

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{~mol} / \mathrm{L}} \\
& \mathrm{pH}=
\end{aligned}
$$

Example. 1 What would the pH of a $2.5 \times 10^{-4} \mathrm{~mol} / \mathrm{L}$ solution of HCl ?

Example. 2 Calculate the pH of a solution containing $5 \times 10^{-5} \mathrm{M}$ solution sodium hydroxide.

Example. 3 If the pH of a solution is 6.4 what is the $\left[\mathrm{H}^{+}\right]$? What is the $\left[\mathrm{OH}^{-}\right]$?

Acid Base Questions

1. Answer Q\#1-6 on page 457.
2. Read Strong and Weak Versus Concentrated and Dilute, page 461 in your textbook and answer Q\#7 and 8 on page 462.

pH Problems

1. Calculate the pH of the solutions that have the following H^{+}concentrations.
a) $1.00 \times 10^{-3} \mathrm{M}$
b) $6.59 \times 10^{-10} \mathrm{M}$
c) $1.00 \times 10^{-6} \mathrm{M}$
d) $7.01 \times 10^{-5} \mathrm{M}$
2. What is the $\left[\mathrm{H}^{+}\right]$of each of the following solutions?
a) $\mathrm{pH}=6.61$
b) $\mathrm{pH}=6.15$
c) $\mathrm{pH}=2.52$
d) $\mathrm{pH}=10.20$
3. Calculate the pH of each of the following solutions.
a) $\mathrm{pOH}=2.00$
b. $\mathrm{pOH}=9.71$
c) $\mathrm{pOH}=7.00$
d) $\mathrm{pOH}=4.98$
4. Calculate the pH of the solutions that have the following $\left[\mathrm{OH}^{-}\right]$?
a) $1.00 \times 10^{-6} \mathrm{M}$
b) $3.45 \times 10^{-8} \mathrm{M}$
c) $2.64 \times 10^{-13} \mathrm{M}$
d) $2.93 \times 10^{-2} \mathrm{M}$

Answers: $1 . a) 3.00$ b) 9.18 c) 6.00 d) $4.15 \quad 2 . a) 2.45 \times 10^{-7} \mathrm{M}$ b) $\left.\left.\left.\left.\left.\left.7.08 \times 10^{-7} \mathrm{M} \mathrm{c}\right) 3.02 \times 10^{-3} \mathrm{M} \mathrm{d}\right) 6.31 \times 10^{-11} \mathrm{M} \quad 3 . a\right) 12.00 \mathrm{~b}\right) 4.29 \mathrm{c}\right) 7.00 \mathrm{~d}\right) 9.02$ $4 . a) 8.00$ b) 6.54 c) 1.4 d) 12.47

1. If the $\mathbf{p H}=3.5$ and you are asked to find the $\left[\mathrm{H}^{+}\right]$
(this is calculating an anti-log)
Enter 3.5 (or any other pH you may be given)
Press +/- key (this reverses the sign)
Press 10^{x} key (pressing $2^{\text {nd }}$ key and then pressing the log key)
Ans 0.000316 or 3.16×10^{-4}
2. If the $\left[\mathrm{H}^{+}\right]=3.16 \times 10^{-4}$ and you are asked to find the $\mathbf{p H}$
(this is calculating a -LOG).
Enter 3.16 (the 3 significant digits of the $\left[\mathrm{H}^{+}\right]$)
a. on the $\mathbf{T I}$ press EE key
b. on the Casio press the EXP key

Press +/- key (this reverses the sign of the exponent you will enter)
Enter 4 (this is the negative exponent of 10 in the $\left[\mathrm{H}^{+}\right]$)
Press LOG key (this actually calculates the LOG of the $\left[\mathrm{H}^{+}\right]$you enter)
Press +/- key (this makes the LOG calculated a - LOG)
Ans 3.5

