## **WODSS SCIENCE**

Name:

SCH 3UI

## **Acid-Base Theories**

Date: \_\_\_\_\_

### The Arrhenius Theory of Acids and Bases

- An acid is a substance that ionizes in water to produce one or more hydrogen ions (H<sup>+</sup> hydronium ion)
- \*\* Acids are molecular compounds, however forms ions when dissolved in water, so we say they "\_\_\_\_\_" in water.\*\*
- e.g.
  - A base is a substance that dissociates in water to form one or more hydroxide ions (OH<sup>-</sup>)
  - \*\* Bases are ionic compounds and form ions when dissolved in water, so we say they "\_\_\_\_\_" in water.\*\*

e.g.

#### Strong and Weak Acids and Bases

**Strong Acid** – an acid that ionizes completely into ions in water

•  $[H^+] = [A^-]$ 

e.g.



• [H<sup>+</sup>] < [HB]

e.g.

**Strong Base** – a base that dissociates completely into ions in water e.g. NaOH, KOH

Weak Base – a base that dissociates/ionizes very slightly in a water solution e.g.  $NH_3$ 

|                                                     | The pri Scale                                                                  |                               |
|-----------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------|
| []                                                  | <u> </u>                                                                       |                               |
| <ul> <li>the concentration of<br/>not ve</li> </ul> | H <sup>+</sup> ions in pure water is 1 x 10 <sup>-7</sup> mol<br>ry convenient | /L                            |
| <ul> <li>pH scale was estab</li> </ul>              | lished so that [H⁺] could be expresse                                          | d in a more convenient manner |
| 1 x 10⁻¹ M                                          | 1 x 10 <sup>-7</sup> M                                                         | 1 x 10 <sup>-14</sup> M       |
| 1                                                   | 7                                                                              | 14                            |
| acidic                                              | neutral                                                                        | basic                         |
| pH = -log[H <sup>+</sup> ]                          |                                                                                |                               |
| in pure water: [H<br>pF                             | <sup>+</sup> ] = 1.0 x 10 <sup>-7</sup> mol/L<br>  =                           |                               |





Example. 2 Calculate the pH of a solution containing  $5 \times 10^{-5}$  M solution sodium hydroxide.

Example. 3 If the pH of a solution is 6.4 what is the  $[H^+]$ ? What is the  $[OH^-]$ ?

#### **Acid Base Questions**

- 1. Answer Q#1-6 on page 457.
- 2. Read Strong and Weak Versus Concentrated and Dilute, page 461 in your textbook and answer Q#7 and 8 on page 462.

#### **pH Problems**

- 1. Calculate the pH of the solutions that have the following H<sup>+</sup> concentrations. a)  $1.00 \times 10^{-3}$  M b)  $6.59 \times 10^{-10}$  M c)  $1.00 \times 10^{-6}$  M d)  $7.01 \times 10^{-5}$  M
- 2. What is the [H<sup>+</sup>] of each of the following solutions?
  a) pH = 6.61
  b) pH = 6.15
  c) pH = 2.52
  d) pH = 10.20
- 3. Calculate the pH of each of the following solutions.
  a) pOH = 2.00
  b. pOH = 9.71
  c) pOH = 7.00
  d) pOH = 4.98
- 4. Calculate the pH of the solutions that have the following [OH<sup>-</sup>]? a)  $1.00 \times 10^{-6}$  M b)  $3.45 \times 10^{-8}$  M c)  $2.64 \times 10^{-13}$  M d)  $2.93 \times 10^{-2}$  M

Answers: 1.a) 3.00 b) 9.18 c) 6.00 d) 4.15 2.a)  $2.45 \times 10^{-7} M$  b)  $7.08 \times 10^{-7} M$  c)  $3.02 \times 10^{-3} M$  d)  $6.31 \times 10^{-11} M$  3.a) 12.00 b) 4.29 c) 7.00 d) 9.02 4.a) 8.00 b) 6.54 c) 1.4 d) 12.47

# 1. If the **pH = 3.5** and you are asked to **find the [H<sup>+</sup>]** (this is calculating an anti-log)

Enter 3.5 (or any other pH you may be given) Press +/- key (this reverses the sign) Press  $10^x$  key (pressing  $2^{nd}$  key and then pressing the log key) Ans 0.000316 or  $3.16 \times 10^{-4}$ 

2. If the  $[H^+] = 3.16 \times 10^{-4}$  and you are asked to find the pH (this is calculating a -LOG).

Enter 3.16 ( the 3 significant digits of the  $[H^+]$  ) a. on the **TI** press **EE key** b. on the **Casio** press the **EXP key** Press **+/- key** (this reverses the sign of the exponent you will enter) Enter **4** (this is the negative exponent of 10 in the  $[H^+]$ ) Press **LOG key** (this actually calculates the LOG of the  $[H^+]$  you enter) Press **+/- key** (this makes the LOG calculated a – LOG ) <u>Ans 3.5</u>