\qquad
Date: \qquad

Counting Significant Figures

1. All non-zeros are significant
2.314 has \qquad sf
2. Zeros can be divided into 3 categories:
a) Leading zeros are never significant
0.001 has \qquad sf
b) Middle zeros are always significant
130.008 has \qquad sf
c) End zeros:

- If a decimal is anywhere in the number, end zeros are significant
- If there is no decimal, end zeros (trailing) are never significant
1.2300 has \qquad sf 19000 has \qquad sf

3. When numbers are expressed in scientific notation, only the digits in the coefficient are significant
\qquad sf
Try some: How many significant figures do each of the following have?
a) $\quad 1.4563 \mathrm{~m}$
b) $\quad 14.563 \mathrm{~cm}$ \qquad
c) $\quad 0.14563 \mathrm{~m}$ \qquad
g) 6 mm
d) 18.20 mm \qquad
h) $\quad 0.0062 \mathrm{~kg}$ \qquad
i) $\quad 1000 \mathrm{~s}$
\qquad
e) $\quad 108.2 \mathrm{~g}$
j) $\quad 800 \mathrm{~m}$
f) $\quad 45 \mathrm{~g}$
k) $\quad 3.00 \times 108 \mathrm{~m}$ \qquad

Calculating with Significant Figures

1. When multiplying or dividing, your answer should have the same number of sig figs as the number in the question with the lowest sig figs.
ex. $57.059 \times 1.26=$
2. When adding or subtracting, your answer should have the same number of decimal places as the number with the lowest decimal places.
ex. $27.15+6.432+0.0005=$
3. Rounding - last digit ≥ 5 round up (for our course)

- last digit < 5 round down

Try some: Calculate the following, with significant figures

1. $8.4+1.34$
2. $9.70-8$
3. 8.65×2.416
4. $6.450 \div 37$
5. $5.67 \mathrm{~cm}+6.394 \mathrm{~cm}+0.3 \mathrm{~cm}$
6. $5.63 \mathrm{~cm} \times 33.569 \mathrm{~cm} \times 23 \mathrm{~cm}$
7. $98.55+2.05 \times 0.22$
8. $0.0002-15 \div 45$
$=$ \qquad
$=$ \qquad
$=$ \qquad
$=$ \qquad
$=$ \qquad
$=$ \qquad
\qquad
$=$ \qquad

Scientific Notation

In order to handle very large and small numbers, scientists use a technique known as scientific notation (a number between 1 and 10, multiplied by base 10 raised to a power). The exponent tells you how many places the decimal has been moved, and in which direction (positive $=$ left, negative $=$ right)

Example. 1
 2700

Example. 20.00045
Express the following in scientific notation:
$23700000=$
$24000=$
$0.000052=$
Expand the following:
$5.0 \times 10^{10}=$
$2.3 \times 10^{-5}=$
$0.0001=$
$0.00000061=$
$186000=$

Express in scientific notation, the result of the following calculations.
$\left(1.78 \times 10^{-4}\right) \div\left(4.18 \times 10^{5}\right)=$
$\left(3.68 \times 10^{-3}\right) \times\left(8.41 \times 10^{2}\right) \times 0.248=$

Rearranging Equations

1. Attempt to isolate the required variable (i.e. the letter that you are required to solve for) so that only it is on the left side of the equal sign.
e.g. solving for \mathbf{b} in $2 b=6$, we have to move 2 to the other side, therefore $b=6 / 2$
e.g. solving for \mathbf{b} in $\mathrm{ab}=\mathbf{c}$, we have to move \mathbf{a} to the other side, therefore $\mathrm{b}=\mathrm{c} / \mathrm{a}$
2. "Cross-over": Top of fraction - move variable to bottom of fraction on opposite side Bottom of fraction - move variable to top of fraction on opposite side
3. Solve equation.

Solve the following equations:

i) for $a: 2 \mathbf{a}=8$	ii) for $a: 6=4 \mathbf{a}$	iii) for $a: a b=e f$
iv) for $a: \frac{a b}{c d}=\frac{e f}{g h}$	v) for $c: \frac{a b}{c d}=\frac{e f}{g h}$	vi) for $c: a+b c=d e f$

