_				_
$TTT \cap I$	DSS	$\alpha \alpha \tau$	ואים	\sim \sim
wu	133	20.1	L'IN	LJPJ

SCH 3UI

Name:	
Date:	

Developing Models of Matter – Summary Note

Theory	Model	Analogy
 Dalton's Theory John Dalton 1808 matter is made up of indivisible atoms each element has its own kind of atom with its own particular mass. 		
 2. Thomson's Theory J.J. Thomson 1904 atom is a positive sphere with embedded negative electrons 		
 3. Rutherford's Theory Ernest Rutherford 1911 atom has a small positive nucleus (with protons), which is surrounded by mostly empty space and rapidly moving electrons 		
Gold Foil Experiment		
4. Chadwick's TheoryJames Chadwick1932discovered the neutron		
 5. Bohr's Theory Niels Bohr 1921 electrons move around nucleus in orbits certain number of electrons in quantized energy levels → more on Bohr's theory later! 		

Electron Arrangements Rutherford's Model →						
Bohr's Th						
	ergy of electrons are quantized					
	itherford Diagrams: 1. Nitrogen					
Draw Boh	r-Rutherford diagrams for H, Li, I	Na and K				
-	are atoms with the same number	=	differing numbers	of neutrons . Isoto	opes are	
Example:	_					
C-12	Carbon-12	¹² ₆ C	p=	n=		
C-13	Carbon-13	¹³ ₆ c	p=	n=		
C-14	Carbon-14	¹⁴ ₆ C	p=			
Radio-iso	otopes : ny elements have		that are			
o Ato	ms of unstable isotopes	, emitting	radiation as their	nucleus changes.		
	e, is the time taken ostance to decay	=	_	of a radioactive		
	pending on the nucleus, these nu	uclear changes n	night happen	or		
Exam	ole:	•				
Medical i	sotopes:					
	isotope is a very	of radioa	ctive substance us	sed in imaging and	t	

 \circ $\,$ Medical isotopes can be delivered directly to the $___$ of the diseased cell.

treatment of disease.