WODSS SCIENCE

SCH 4CI

Name: _____

Date: _____

Unit 4: Organic Chemistry
Generally defined as the chemistry of compounds. The properties of organic
compounds are determined by:
1) a series that are linked together, forming an almost
completely unreactive to which we add
2) a series of which determine the basic "chemistry" of the molecule
Let's first become familiar with the skeleton of organic compounds, called only carbon and hydroge
All organic compounds are built using carbon atoms that have
Alkanes –
Alkanes – hydrocarbon containing only single bonds between carbon atoms. Alkanes are
since all the carbon atoms are bonded to 4 other atoms. Alkanes
have a name ending in <u>""</u>
The general formula for an alkane is:
Drawing Structural formulas: Example C ₅ H ₁₂
Step 1: Write the Carbon backbone of appropriate length

Step 2: Add single lines to each Carbon to a total of 4 lines

Step 3: Fill bonds with hydrogen.

Prefix	# of C Atoms	IUPAC Name	Formula	Structural formula
Meth-	1			
Eth-	2			
Prop-	3			
But-	4			
Pent-	5			
Hex-	6			
Hept-	7			
Oct-	8			
Non-	9			
Dec-	10			

Properties of Alkanes

1.	Are very(C-C and C-H bonds are strong and not easily broken). Mainly used as					
2.						
AI	tenes - hydrocarbon containing a bond between two carbon atoms. Have a					
na	ne ending in					
T٢	e general formula for an alkene is:					
Na	ming alkenes differs from alkanes by:					
1.	Root chain must contain both, even if it is					
2.	Chain is numbered from the endto the C=C, and the position of the bond is					
	indicated by the in it.					
3.	The suffix is – (drop the "ANE" and add "ENE").					
Dr	awing Structural formulas of alkenes:					
E>	ample. 1-butene 2-butene (isomers)					
St	p 1: Write carbon backbone of appropriate length					
St St	p 2: Establish position of double and single bonds					
AI	x ynes - hydrocarbon containing abond between two carbon atoms. Have the					
na	ne ending in					
Tł	e general formula for an alkyne is:					
E>	pentyne 2-pentyne (isomers)					
Pr	operties of Alkenes and Alkynes:					
Ve	ry similar to alkanes, however double and triple bonds make them more reactive.					
ls	mers: Two or more compounds with the but have a but have a					
E>	C ₆ H ₁₂					

Practice Q#3 and 4 on page 186 of textbook