Date: \qquad

Unit 5: Gases and Atmospheric Chemistry The Kinetic Molecular Theory of Gases

1. The volume of the particles is \qquad compared to the volume of the container. In other words, a sample of gas is mainly \qquad space.
2. The particles are in \qquad . They collide with each other, and with the walls on the container.
3. There is \qquad of energy when the two particles collide.
4. In the gas phase there are \qquad attractive forces between particles (this is in contrast with liquid and solid phases).
5. At any given \qquad , the average kinetic energy of the particles in all gases is the same.

Measuring Gas Pressure

Torricelli) vacuum - instrument used for measuring atmospheric pressure (designed by
$\mathrm{h}=760$
mm Hg

- Consists of a long glass tube that is sealed at one end and filled with liquid
- tube is inverted, with open end immersed in a dish containing the same liquid as the tube
- Some of the liquid flows from the tube into the dish, creating a vacuum at the sealed end of the tube
- The height of this column of liquid is a measure of the pressure being exerted by the atmosphere

Units of Pressure

- in early experiments with the mercury barometer, Torricelli measured gas pressure in mm Hg

1 torr $=1 \mathrm{~mm} \mathrm{Hg}$

- SI unit of pressure is the \qquad (Pa)
- very small unit
- calculated that a dollar bill lying flat on a table exerts a pressure of about \qquad Pa
- we generally use kilopascal (kPa)
- at sea level, our atmosphere exerts a pressure of
\qquad $\mathrm{mm} \mathrm{Hg}=$ \qquad $\mathrm{kPa}=1$ \qquad
Volume and Pressure
How does a change in volume affect pressure?
- If the volume of a sample is \qquad , the gas molecules would hit the walls of the container more often, and therefore the pressure on the container walls would be \qquad

- If the volume of the container was \qquad , the gas molecules would collide with the walls less frequently because they have further to travel, therefore pressure would \qquad

Temperature and Volume

How does a change in temperature affect the volume of a gas-filled container which can easily be expanded?

- If a balloon is \qquad , the gas molecules will speed up
- They will strike the wall of the balloon more \qquad and with more \qquad
- Thus the volume of a gas \qquad as its temperature increases

Pressure and Temperature

How does a change in temperature affect the pressure of a gas filled container that cannot expand?

- If a scuba container is heated, the gas molecules will speed up
- They will strike the walls of the container more frequently and with more force
- Therefore the \qquad will increase
- The pressure of a gas \qquad as its temperature increases, and decreases with a
\qquad in temperature

Boyle's Law

- relationship between pressure and volume

BOYLE'S LAW \rightarrow at constant temperature, the volume of a fixed mass of any gas is inversely proportional to its pressure V $\propto 1 / \mathrm{P}$

1/Pressure (1/kPa)

Ex. $1 \quad$ A bailoon with a volume of 5.0 L is filled with air at 101 kPa pressure. The baiioon is taken up to the mountains where the atmospheric pressure is 91 kPa . If the temperature is the same in both places, what is the new volume of the balloon?

Charles' Law

- relationship between volume and temperature

Absolute zero \rightarrow temperature at which particles would cease to move and would therefore have zero kinetic energy (zero volume)

Kelvin temperature scale $\rightarrow{ }^{\circ} \mathrm{C}+273.15=\mathrm{K} \quad$ or

CHARLES' LAW \rightarrow at constant pressure, the volume of a fixed mass of any gas is directly proportional to its Kelvin temperature

$$
V \alpha T
$$

Ex. A balloon is filled with helium gas to a volume of 1.20 L at a pressure of 105 kPa and a temperature of $15.0^{\circ} \mathrm{C}$. If the pressure remains constant and the temperature rises to $30.0^{\circ} \mathrm{C}$, what will be the new volume of the balloon?

Gay-Lussac's Law (P-T Law)

- relationship between pressure and temperature
- if a gas is contained in a vessel that cannot expand, as the temperature increases the pressure increases

GAY-LUSSAC'S LAW - at constant volume, the pressure of a fixed mass of any gas is proportional to its Kelvin temperature

Ex. A steel cylinder with a volume of 450 mL contains a gas at a pressure of 520 kPa at $25^{\circ} \mathrm{C}$. If the cylinder is heated to $410{ }^{\circ} \mathrm{C}$, what will the new pressure be?

The Combined Gas Law Equation

- in each of the three gas laws discussed, one of the variables (pressure, volume or temperature) was held constant
- in practice, we often find that all three variables change

COMBINED GAS LAW EQUATION - combination of the equations pertaining to Boyle's Law,
Charles' Law, and Gay-Lussac's Law

$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
T = constant
Boyle's Law
$\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
P = constant
Charles' Law
$\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{V}=$ constant
Gay-Lussac's Law

Ex. 1 An aerosol can with a volume of 325 mL contains a gas at 445 kPa and $12{ }^{\circ} \mathrm{C}$. What volume would the gas occupy if it was allowed to escape at 101 kPa and $21^{\circ} \mathrm{C}$?

STP - standard temperature and pressure
SATP - standard ambient temperature and pressure HW

1. Summary Chart including the following:
2. Boyle's Law Q\#1-3 pg 514
3. Charles' Law Q\#11,12,14 pg 522
4. GL Q\#21-23 pg 525
5. Combined Q\#2-4 pg 542
