WODSS SCIENCE SCH 3UI

N	am	Δ	•
110		LC	•

|--|

Molar Mass and the Mole

Molar Mass (M) \rightarrow _____

Avogadro's number is special because 6.022×10^{23} atoms of an element has a mass in grams that is equal to its atomic mass.

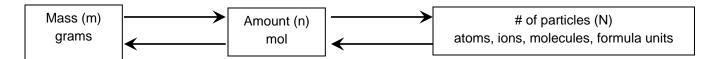
Average atomic mass in u = Molar mass in g/mol

- Example 1 Atomic mass Na = _____ Molar Mass of Na = _____
- Example 2 Find the molar mass of NaCI:

You can use molar mass to write conversion factors for NaCI:

- a) What is the mass of 2.56 mol NaCl?
- b) How many mol are in a 35.2 g sample of NaCl?

Example 3 What is the mass of a 0.750 mol sample of CO_2 ?


Example 4 How many mol are in a 23.6 g sample of $Mg(NO_3)_2$?

Example 5 What is the mass of 3.67 x 10^{24} formula units of K₂O?

HW: page 235 Q# 32,33,37,40; page 237 Q# 41,42; pg 239 Q# 51,52 pg 242 Q# 61a,b,62a,b,63,64,66,67

Summary So Far

Name (symbol)	Unit
Particle Mass (M)	
Avogadro's Number (N _A)	
Number of particles (N)	
mole (n)	
mass (m)	
Molar Mass (M)	

Equations: