\qquad
\qquad

Stoichiometry

1 marshmallow +4 chocolate chips +2 crackers \rightarrow \qquad
If I have 6 marshmallows and I want to use them all up:

- How many s'mores can I make? \qquad
- How many chocolate chips will I need? \qquad
- How many crackers will I need? \qquad
Show the math to determine number of crackers needed:

Stoichiometry:

- \qquad in balanced chemical equations tell you the quantities needed for a reaction, and how much product is produced.
$\mathrm{Zn}+\mathrm{HCl} \rightarrow \quad \mathrm{ZnCl}_{2}+\mathrm{H}_{2}$
- Coefficients can be read as either \# of \qquad or \qquad .
- \qquad are ratios between the coefficients in an equation
The mole ratios for the above equation are:
- Mole ratios can be used to find the amount of \qquad needed or to predict the amount of
\qquad made.
- Write the ratio as a conversion factor as the unknown/known

Example 1.

$\mathrm{MgCl}_{2}+$ \square $\mathrm{Na}_{3} \mathrm{P} \rightarrow \mathrm{Mg}_{3} \mathrm{P}_{2}$ $+$ \qquad NaCl
a) If 9 mol of MgCl_{2} is consumed, how many mol NaCl is produced?
b) If 9 mol of MgCl_{2} is consumed, how many mol of $\mathrm{Na}_{3} \mathrm{P}$ react?
c) If 3.2 mol of $\mathrm{Na}_{3} \mathrm{P}$ react, what mass of $\mathrm{Mg}_{3} \mathrm{P}_{2}$ is produced?
d) If 10 g of NaCl was produced, how many moles of $\mathrm{Na}_{3} \mathrm{P}$ was reacted?

Stoichiometry Practice Problems:

1. Consider the following reaction: _ $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$
a) Write out all the mole ratios
b) How many moles of O_{2} are required to react with 100 moles of H_{2} ?
c) How many moles of water are formed when 2478 moles of O_{2} react?
d) How many moles of H_{2} are required to react completely with 6.02×10^{23} moles of O_{2} ?
2. Aluminum bromide can be prepared by reacting small pieces of aluminum foil with liquid bromine, as shown in this equation: _ $\mathrm{Al}_{(\mathrm{s})}+\mathrm{Br}_{2(\mathrm{ll}} \rightarrow \mathrm{AlBr}_{3(\mathrm{~g})}$
a) Balance the equation
b) How many moles of bromine are needed to produce 5 mol of aluminum bromide?
c) How many moles of aluminum are needed to produce 5 mol of aluminum bromide?
