WODSS SCIENCE SCH 3UI	Name:
Sch 501	Date:
$- \left(\begin{smallmatrix} 0 & 0 \\ \forall \\ \hline \\ \hline$	
If I have 25 marshmallows, 96 chips and 48 crackers, how many s'mores can we make?	
in balanced chemical equations tell you the for a reaction, and how much product is produced!	needed
$Zn_{(s)}$ + $HCl_{(aq)}$ \rightarrow	
Coefficients can be read as either number of	·
: is a ratio between the coefficients in an equation.	
The mole ratios for the above equation are: $Zn:HCI = HCI:ZnCI_2 =$	
$Zn:ZnCl_2 = HCl:H_2 =$	
$Zn:H_2 = ZnCl_2:H_2 =$	
You can use mole ratios to find the amount of reactants or	predict the amount of
*Write the ratio as a conversion factor as the	
Ex 1. $3MgCl_2 + 2Na_3P \rightarrow Mg_3P_2 + 6NaCl$ a) If 9 mol of MgCl ₂ is consumed, how many mol NaCl is produced?	
b) If 9 mol of MgCl ₂ is consumed, how many mol of Na ₃ P react?	
c) If 3.2 mol of Na ₃ P react, what mass of Mg ₃ P ₂ is produced?	

d) If 10 g of NaCl was produced, how many moles of Na_3P was reacted?

- 1. Consider the following reaction: $----H_2(g) + -----O_2(g) \rightarrow ------H_2O(I)$
- a) Write down all the possible mole ratios

b) How many moles of O₂ are required to react with 100 moles of H₂?

c) How many moles of water are formed when 2478 moles of O2 react?

d) How many moles of H₂ are required to react completely with 6.02 x 10^{23} moles of O₂?

- 2. Aluminum bromide can be prepared by reacting small pieces of aluminum foil with liquid bromine at room temperature. The reaction is accompanied by flashes of red light.
 - a) Write a balanced chemical equation of the above reaction.
 - b) How many moles of bromine are needed to produce 5 mol of aluminum bromide?
 - c) How many moles of aluminum are needed to react?