## Review: Quantities in Chemical Reactions

Test Helps: Periodic table, calculator, nomenclature reference sheet

## Test Topics

1. For every problem, you must have a therefore statement and correct units.
2. Avogadro's number: $\qquad$ . What does it mean?
3. Atomic mass / molecular mass / formula unit mass (units - $\qquad$ ). What does it mean?
4. Molar mass (units - $\qquad$ ). What does it mean?
5. What is a mole?
6. Convert between mass, moles, and number of particles (follow graphic organizer).
7. Find the percent composition of a compound, when given either the molecular formula of the compound OR when given the masses of each element in the compound.
8. Finding the Empirical and Molecular formula
9. Stoichiometry: $\qquad$

## 10. Mole Ratio:

$\qquad$
11. Stoichiometry Problems - solve these using the second graphic organizer
a. Finding the theoretical yield: $\qquad$
12. Calculating percent yield $=$
13. Explain why a percent yield won't always be $100 \%$.

## Review Questions:

1. What is Avogadro's number and what does it mean?
2. How many atoms does a 2.6 mol sample of silver ( Ag ) have?
3. A necklace contains 0.0342 mol of silver (Ag).
a) How many grams of silver are in the necklace?
b) How many atoms of silver are there in the necklace?
4. Find the molecular mass and molar mass of carbon dioxide.
5. Find the mass of $7.38 \times 10^{21}$ formula units of $\mathrm{Pb}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.
6. What is the percent composition of $\mathrm{H}_{2} \mathrm{O}_{2}$ ?
7. What is the percent composition of a sample that contains 3.45 g of sodium and 5.33 g of chlorine gas?
8. What's the empirical formula of a molecule containing $65.5 \%$ carbon, $5.5 \%$ hydrogen, and $29.0 \%$ oxygen?
9. If the molar mass of the compound in problem 1 is 110 grams $/ \mathrm{mole}$, what's the molecular formula?
10. A 50.51 g sample of a compound made from phosphorus and chlorine is decomposed. Analysis of the products showed that 11.39 g of phosphorus atoms were produced. What is the empirical formula of the compound?
11. Write the molecular formulas of the following compounds:
a. A compound with an empirical formula of $\mathrm{C}_{2} \mathrm{OH}_{4}$ and a molar mass of 88 grams per mole.
b. A compound with an empirical formula of $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}$ and a molar mass of 136 grams per mole.
c. A compound with an empirical formula of CFBrO and a molar mass of 254.7 grams per mole.
12. How many grams of oxygen are required to react with 9.7 g of magnesium to produce magnesium oxide? Balanced equation: $2 \mathrm{Mg}_{(\mathrm{s})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{MgO}_{(\mathrm{s})}$
13. Hydrogen and chlorine gases react to form hydrogen chloride gas according to the following reaction:

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{HCl}_{(\mathrm{g})}
$$

a) If 2 moles of hydrogen react with excess of chlorine, what is the limiting reactant?
b) How many moles of hydrogen chloride will form?
14. Table salt, $\mathrm{NaCl}_{(\mathrm{s})}$, can be formed by the reaction of sodium metal and chlorine gas:

$$
2 \mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NaCl}_{(\mathrm{s})}
$$

a) If 45.98 g of sodium and excess of chlorine are reacted together
b) How many moles of salt are produced?
c) What mass of salt is produced?
15. Sugar $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ will decompose into ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and carbon dioxide over time according to the following reaction:

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6(\mathrm{~s})} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(1)}+2 \mathrm{CO}_{2(\mathrm{~g})}
$$

a) What is the theoretical yield of ethanol available from 10.0 g of sugar?
b) An experiment done in the lab produces 0.66 g of ethanol from 10.0 g of sugar. What is the percent yield?

ANSWERS: 2. $1.6 \times 10^{24}$ atoms 3 a$) 3.69 \mathrm{~g}$ b) $2.06 \times 10^{22}$ atoms
4. Molecular mass $=44.01 \mathrm{u}$ Molar mass $=44.01 \mathrm{~g} / \mathrm{mol} 5.9 .98 \mathrm{~g} 6 . \% \mathrm{O}=94.1 \% \quad \mathrm{H}=5.9 \%$
7. \% Na $=39.3 \% \% \mathrm{Cl}=60.7 \%$ 8. $\mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}$ 9. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}_{2}$ 10. $\mathrm{PCl}_{3}$ 11. a) $\mathrm{C}_{4} \mathrm{O}_{2} \mathrm{H}_{8}$ b) $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$
c) $\mathrm{C}_{2} \mathrm{~F}_{2} \mathrm{Br}_{2} \mathrm{O}_{2}$ 12.6.4 g 13. a) Hydrogen is LR b) 4 mol HCl 14. a) Na is LR b) 2 mol NaCl
c) 116.88 g of NaCl 15. a) 5.1 g b) $13 \%$

